

Lecture #1

September 3rd, 2019

Counting and Combinatorial Analysis.

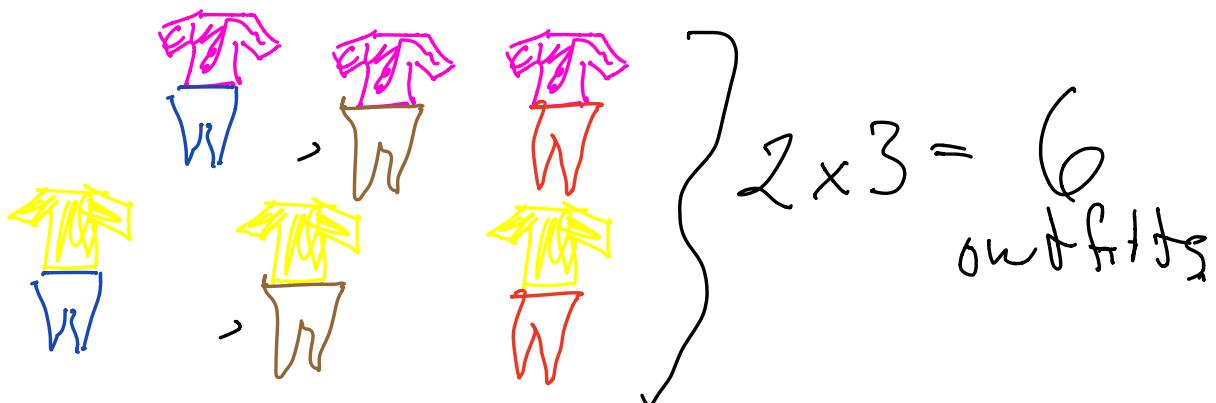
- Probability is the study of quantifying the likelihood of a random event.
- In many such situations, we need to know how many possible events can occur.
 - ↳ Ex: A lottery consists of choosing four digits from 0-9. How many possible tickets are there?
- The general methods^(techniques) for counting discrete (not discrete) events is called combinatorial analysis

Basic Counting Principle

Suppose two experiments are being performed, and suppose the first experiment has n possible outcomes and the second experiment has m possible outcomes. Then the number of outcomes for the experiments together is mn .

Basic Example!

Suppose that I have two shirts and ; and three pairs of pants, , ,



Generalized Counting Principle.

Suppose there are r many experiments, with the experiment i having n_i outcomes. Then the total number of possible outcomes is

$$n_1 n_2 \dots n_r = \prod_{i=1}^r n_i$$

Ex: How many possible lottery tickets are there if you choose 4 four digits from 0-9?

$$\frac{10}{r} \quad \frac{10}{\uparrow} \quad \frac{10}{\uparrow} \quad \frac{10}{\uparrow} = 10^4 = 10,000 \text{ tickets.}$$

10 possibilities for each one (0-9)

Real Life Example:

Lotto max: each ~~game~~ game consists of 7 numbers chosen from 1-50. So the number of possible "games" are $50^7 \approx 781$ billion.

781 250 000 000

Permutations (1-3)

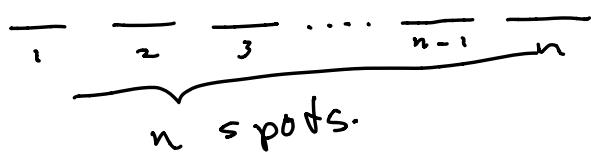
Suppose you have some objects. How many ways can you arrange them in a row?

- ~ Each such rearrangement is called a permutation (because you permute them).

Ex: How many numbers can be formed out of 1, 2, 3? We can just write them out:

$\underbrace{123, 132, 213, 231, 312, 321}_{6 \text{ of them!}}$

Now let's consider a more general situation: Say we have a box of n things and we want to arrange them:



For the first spot, we can choose anything; so there are n possible choices..

$$\frac{n}{1} \quad \frac{}{2} \quad \frac{}{3} \quad \cdots \quad \frac{}{n}.$$

For the second spot, there are only $n-1$ things left.

n $n-1$ — — —

Going on this way we get that each spot has one fewer option. By the ^{basis} principle of counting there are $n \cdot (n-1) \cdot (n-2) \dots 3 \cdot 2 \cdot 1 = n!$ many options.

Permutations with repeats:

Let's count the number of ways we can rearrange the letters in

banana

If we label each of the letters

$b, a_1, n_1, a_4, n_5, a_6$

so that they are all distinguishable, then there are $6!$ different permutations. However,

$b, a_1, n_1, a_4, n_5, a_6$ and $b, a_2, n_2, a_5, n_3, a_6$

are the same!

Suppose now we fix the b and the a's and we only move around the n's.

Then there are $2! = 2$ possible arrangements.

If we fix the b and the n's and just move around the a's then there are $3!$ different arrangements.

All together, there are $2! 3!$ such arrangements where we only swap a's with a's and n's with n's.

Since these permutations are the "same."

We cancel them out: $\frac{6!}{3! 2!} = 60$.

General Fact: Given n objects

of which n_i are alike, $\sum_{i=1}^k n_i = n$,

then the number of permutations is

$$\frac{n!}{n_1! n_2! \cdots n_k!}$$